منابع مشابه
The Method of Alternating Projections and the Method of Subspace Corrections in Hilbert Space
The method of alternating projections and the method of subspace corrections are general iterative methods that have a variety of applications. The method of alternating projections, first proposed by von Neumann (1933) (see [31]), is an algorithm for finding the best approximation to any given point in a Hilbert space from the intersection of a finite number of subspaces. The method of subspac...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
A Method of Successive Corrections of the Control Subspace in the Reduced-Order Variational Data Assimilation*
A version of the reduced control space four-dimensional variational method (R4DVAR) of data assimilation into numerical models is proposed. In contrast to the conventional 4DVAR schemes, the method does not require development of the tangent linear and adjoint codes for implementation. The proposed R4DVAR technique is based on minimization of the cost function in a sequence of low-dimensional s...
متن کاملA sharp convergence estimate for the method of subspace corrections for singular systems of equations
This paper is devoted to the convergence rate estimate for the method of successive subspace corrections applied to symmetric and positive semidefinite (singular) problems. In a general Hilbert space setting, a convergence rate identity is obtained for the method of subspace corrections in terms of the subspace solvers. As an illustration, the new abstract theory is used to show uniform converg...
متن کاملThe subspace iteration method – Revisited
The objective in this paper is to present some recent developments regarding the subspace iteration method for the solution of frequencies and mode shapes. The developments pertain to speeding up the basic subspace iteration method by choosing an effective number of iteration vectors and by the use of parallel processing. The subspace iteration method lends itself particularly well to shared an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2001
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(00)00518-5